Predictive coding is a message-passing framework initially developed to model information processing in the brain, and now also topic of research in machine learning due to some interesting properties. One of such properties is the natural ability of generative models to learn robust representations thanks to their peculiar credit assignment rule, that allows neural activities to converge to a solution before updating the synaptic weights. Graph neural networks are also message-passing models, which have recently shown outstanding results in diverse types of tasks in machine learning, providing interdisciplinary state-of-the-art performance on structured data. However, they are vulnerable to imperceptible adversarial attacks, and unfit for out-of-distribution generalization. In this work, we address this by building models that have the same structure of popular graph neural network architectures, but rely on the message-passing rule of predictive coding. Through an extensive set of experiments, we show that the proposed models are (i) comparable to standard ones in terms of performance in both inductive and transductive tasks, (ii) better calibrated, and (iii) robust against multiple kinds of adversarial attacks.
translated by 谷歌翻译
A large amount of recent research has the far-reaching goal of finding training methods for deep neural networks that can serve as alternatives to backpropagation (BP). A prominent example is predictive coding (PC), which is a neuroscience-inspired method that performs inference on hierarchical Gaussian generative models. These methods, however, fail to keep up with modern neural networks, as they are unable to replicate the dynamics of complex layers and activation functions. In this work, we solve this problem by generalizing PC to arbitrary probability distributions, enabling the training of architectures, such as transformers, that are hard to approximate with only Gaussian assumptions. We perform three experimental analyses. First, we study the gap between our method and the standard formulation of PC on multiple toy examples. Second, we test the reconstruction quality on variational autoencoders, where our method reaches the same reconstruction quality as BP. Third, we show that our method allows us to train transformer networks and achieve a performance comparable with BP on conditional language models. More broadly, this method allows neuroscience-inspired learning to be applied to multiple domains, since the internal distributions can be flexibly adapted to the data, tasks, and architectures used.
translated by 谷歌翻译
预测性编码(PC)是计算神经科学中的有影响力的理论,它认为皮层通过实施层次结构的预测误差最小化过程来形成无监督的世界模型。 PC网络(PCN)分为两个阶段。首先,更新神经活动以优化网络对外部刺激的反应。其次,更新突触权重以整合活动中的这种变化 - 一种称为\ emph {前瞻性配置}的算法。虽然先前的工作已经显示了如何在各种限制下发现近似倒流(BP),但最近的工作表明,在该标准制度中运行的PCN不近似BP,但仍获得了竞争性培训和广泛性培训,以进行BP训练。网络在诸如在线,几乎没有射击和持续学习之类的任务上的网络效果超过了它们,在该任务中,大脑擅长于大脑。尽管这种有希望的经验表现,但理论上对PCN的性质和动力学在该制度中的理解很少。在本文中,我们对经过预期配置训练的PCN的性质进行了全面的理论分析。我们首先得出有关PCN的推理平衡以及与目标传播(TP)的紧密联系关系的分析结果。其次,我们提供了PCN中学习的理论分析,作为广义期望最大化的变体,并使用它来证明PCN与BP损耗函数的关键点的收敛性,从而表明,从理论上讲,深色PCN可以实现相同的实现。作为BP的概括性能,同时保持其独特的优势。
translated by 谷歌翻译
大脑如何执行信用分配是神经科学中的基本未解决问题。已经提出了许多“生物学上合理的”算法,这些算法计算了近似通过反向传播计算的梯度(BP),并以更紧密地满足神经回路施加的约束的方式运行。许多这样的算法都利用了基于能量的模型(EBM)的框架,其中对模型中的所有自由变量进行了优化以最大程度地减少全局能量函数。但是,在文献中,这些算法存在于孤立状态,没有将它们联系在一起的统一理论。在这里,我们提供了一个全面的理论,说明EBM可以近似BP的条件,这使我们能够统一许多BP近似值导致文献中的许多BP近似(即预测性编码,平衡传播和HEBBIAN学习),并证明它们的近似值均为BP源于自由相平衡处EBM的简单和一般数学特性。然后可以通过不同的能量函数以不同的方式利用该属性,这些特定选择产生了BP Approxatimating算法的家族,两者都包含文献中的已知结果,并且可用于得出新的结果。
translated by 谷歌翻译
文献中已经提出了许多关联记忆的神经网络模型。其中包括经典的Hopfield网络(HNS),稀疏分布式记忆(SDM)以及最近的现代连续Hopfield网络(MCHN),该网络在机器学习中具有与自我注意力的紧密联系。在本文中,我们提出了一个通用框架,以理解此类内存网络的操作,例如三个操作的顺序:相似性,分离和投影。我们将所有这些记忆模型作为我们的一般框架的实例,具有不同的相似性和分离函数。我们将Krotov等人(2020)的数学框架扩展到使用神经元之间仅具有二阶相互作用的神经网络动力学来表达通用的关联存储模型,并得出了一种通用能量函数,该函数是动力学的lyapunov函数。最后,使用我们的框架,我们从经验上研究了这些关联记忆模型使用不同相似性函数的能力,超出了点产品相似性度量,并从经验上证明了欧几里得或曼哈顿距离距离相似性指标在实践中在许多任务中表现出色,从而启用了一项启用一项效果比现有模型更强大的检索和更高的内存能力。
translated by 谷歌翻译
An Anomaly Detection (AD) System for Self-diagnosis has been developed for Multiphase Flow Meter (MPFM). The system relies on machine learning algorithms for time series forecasting, historical data have been used to train a model and to predict the behavior of a sensor and, thus, to detect anomalies.
translated by 谷歌翻译
Diffusion models have achieved justifiable popularity by attaining state-of-the-art performance in generating realistic objects from seemingly arbitrarily complex data distributions, including when conditioning generation on labels. Unfortunately, however, their iterative nature renders them very computationally inefficient during the sampling process. For the multi-class conditional generation problem, we propose a novel, structurally unique framework of diffusion models which are hierarchically branched according to the inherent relationships between classes. In this work, we demonstrate that branched diffusion models offer major improvements in efficiently generating samples from multiple classes. We also showcase several other advantages of branched diffusion models, including ease of extension to novel classes in a continual-learning setting, and a unique interpretability that offers insight into these generative models. Branched diffusion models represent an alternative paradigm to their traditional linear counterparts, and can have large impacts in how we use diffusion models for efficient generation, online learning, and scientific discovery.
translated by 谷歌翻译
In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings.
translated by 谷歌翻译
Crop type maps are critical for tracking agricultural land use and estimating crop production. Remote sensing has proven an efficient and reliable tool for creating these maps in regions with abundant ground labels for model training, yet these labels remain difficult to obtain in many regions and years. NASA's Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar instrument, originally designed for forest monitoring, has shown promise for distinguishing tall and short crops. In the current study, we leverage GEDI to develop wall-to-wall maps of short vs tall crops on a global scale at 10 m resolution for 2019-2021. Specifically, we show that (1) GEDI returns can reliably be classified into tall and short crops after removing shots with extreme view angles or topographic slope, (2) the frequency of tall crops over time can be used to identify months when tall crops are at their peak height, and (3) GEDI shots in these months can then be used to train random forest models that use Sentinel-2 time series to accurately predict short vs. tall crops. Independent reference data from around the world are then used to evaluate these GEDI-S2 maps. We find that GEDI-S2 performed nearly as well as models trained on thousands of local reference training points, with accuracies of at least 87% and often above 90% throughout the Americas, Europe, and East Asia. Systematic underestimation of tall crop area was observed in regions where crops frequently exhibit low biomass, namely Africa and South Asia, and further work is needed in these systems. Although the GEDI-S2 approach only differentiates tall from short crops, in many landscapes this distinction goes a long way toward mapping the main individual crop types. The combination of GEDI and Sentinel-2 thus presents a very promising path towards global crop mapping with minimal reliance on ground data.
translated by 谷歌翻译
Algorithms and technologies are essential tools that pervade all aspects of our daily lives. In the last decades, health care research benefited from new computer-based recruiting methods, the use of federated architectures for data storage, the introduction of innovative analyses of datasets, and so on. Nevertheless, health care datasets can still be affected by data bias. Due to data bias, they provide a distorted view of reality, leading to wrong analysis results and, consequently, decisions. For example, in a clinical trial that studied the risk of cardiovascular diseases, predictions were wrong due to the lack of data on ethnic minorities. It is, therefore, of paramount importance for researchers to acknowledge data bias that may be present in the datasets they use, eventually adopt techniques to mitigate them and control if and how analyses results are impacted. This paper proposes a method to address bias in datasets that: (i) defines the types of data bias that may be present in the dataset, (ii) characterizes and quantifies data bias with adequate metrics, (iii) provides guidelines to identify, measure, and mitigate data bias for different data sources. The method we propose is applicable both for prospective and retrospective clinical trials. We evaluate our proposal both through theoretical considerations and through interviews with researchers in the health care environment.
translated by 谷歌翻译